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Neural mechanisms of relational learning 
and fast knowledge reassembly in plastic 
neural networks
 

Thomas Miconi    1,2   & Kenneth Kay    3,4,5 

Humans and animals have a striking ability to learn relationships between 
items in experience (such as stimuli, objects and events), enabling 
structured generalization and rapid assimilation of new information. 
A fundamental type of such relational learning is order learning, which 
enables transitive inference (if A > B and B > C, then A > C) and list linking 
(A > B > C and D > E > F rapidly ‘reassembled’ into A > B > C > D > E > F 
upon learning C > D). Despite longstanding study, a neurobiologically 
plausible mechanism for transitive inference and rapid reassembly 
of order knowledge has remained elusive. Here we report that neural 
networks endowed with neuromodulated synaptic plasticity (allowing 
for self-directed learning) and identified through artificial metalearning 
(learning-to-learn) are able to perform both transitive inference and list 
linking and, further, express behavioral patterns widely observed in humans 
and animals. Crucially, only networks that adopt an ‘active’ solution, in 
which items from past trials are reinstated in neural activity in recoded form, 
are capable of list linking. These results identify fully neural mechanisms 
for relational learning, and highlight a method for discovering such 
mechanisms.

How do we gain broad knowledge from limited experience? Humans 
and animals can generalize and learn rapidly from limited experience, 
yet how these abilities are implemented in the brain remains an open 
question1–3. A possibly fundamental basis is the learning of relations 
between different experiences (such as ‘stronger than’, ‘next to’, ‘same 
as’ and ‘part of’) because relations specify a particular structure for 
subsequent generalization and inference. Additionally, such relational 
learning is thought to enable the construction and rapid modification 
of internal models of the world—variously termed ‘relational memory’, 
‘schemas’ and ‘cognitive maps’—which are increasingly recognized as 
essential to cognition4,5.

One fundamental type of relational learning is order learning, 
which is broadly applicable to a range of concepts such as space, time, 

rank and number6,7. Critically, understanding order confers the abil-
ity to perform transitive inference, the ability to infer relative order 
between items not previously observed together. For example, after 
learning to choose between two stimuli that are ‘adjacent’ in an underly-
ing ordered series—or ‘list’ (A > B, B > C, C > D, etc., where ‘>’ designates 
‘chosen over’)—humans and animals can choose correctly on ‘nonad-
jacent’ pairs not previously seen (A > C, B > D, etc.). Transitive infer-
ence has been observed in a wide range of species including humans, 
monkeys, rodents, birds and insects6,8.

Remarkably, animals and humans can also rapidly learn a global 
ordering across separately learned lists, when presented with limited 
new information. That is, after separately learning lists (for example, 
A > B > C and D > E > F), participants that learn a linking pair (here C > D) 
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relational learning reorganizes neural representations of linked items, 
potentially enabling inferential responses as a result10,12, but leave open 
the question of how this reorganization occurs. In modeling work, neu-
ral networks can be explicitly trained (through an artificial optimization 
algorithm) to learn a given list or set of lists, including list linking; these 
networks exhibit internal representations and behavioral patterns 
consistent with experimental results10,13–15. However, because these 
approaches use hand-designed, nonbiological learning algorithms 
(usually based on backpropagation), or leave the learning process 
largely unspecified, they do not explain how order learning can be 
implemented in biologically plausible neural processes.

can then immediately infer across-list pairs (for example, B > E). This 
ability, known as ‘list linking’8–10, demonstrates not only rapid assimi-
lation of new information but also the fast ‘reassembly’10 of existing 
knowledge—after the presentation of the linking pair, participants 
must somehow reorganize their existing representations of previously 
learned list items not in the linking pair.

Numerous models of order learning have been proposed to explain 
transitive inference and list linking (see refs. 8,11 for reviews). How-
ever, currently, no biologically plausible neural model of order learn-
ing reproduces the various behavioral patterns commonly reported 
in experimental work11. Recent experimental findings suggest that 
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Fig. 1 | Tasks, model and overall performance. a, Schematic of task paradigms. 
Letters (A, B, C, etc.) refer to arbitrary stimuli (items). In transitive inference, 
participants learn to choose between ‘adjacent’ pairs of items (such as B over 
C) in accordance with an underlying ordering (list) and are subsequently tested 
on nonadjacent pairs (such as C over F). In list linking, participants first learn 
to choose between adjacent pairs of items within two separate lists (such as A 
to D and E to H), then encounter a ‘linking pair’ (here D versus E), after which 
participants are tested on across-list pairs (such as B versus F). b, Table of trial 
types. Each trial type is defined by the pair of items presented in the trial (identity 
of item 1 and item 2). The correct choice is the higher-ranked item (item 1 versus 
item 2). c, Trial structure. Each trial is composed of four time steps as follows: 
stimulus presentation (stimulus), response (choice), feedback signal (reward) 

and delay. For illustration, each step is depicted as would be presented in a  
real-world experiment, with random fractal images as items; actual stimuli are 
binary vectors, randomly generated for each episode. d, Episode structure.  
Each episode consists of 20 trials with only adjacent pairs, followed by 10 trials 
with all possible pairs. Plastic weights are reset between episodes. e, Schematic 
of the neural model. The model is a recurrent network augmented with plastic 
weights controlled by self-generated neuromodulation. See ‘Main’ and Methods 
for full description. f, Model performance across metatraining. Plotted is 
the mean performance on the last ten trials of episodes (30,000 total) for 30 
separate metatraining runs. Curves smoothed with a boxcar filter of width 10. 
Here two runs show consistently lower performance, suggestive of a different 
task solution.
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To address this challenge, here we take a different approach—
rather than use a prespecified learning algorithm to train a neural 
system on one (or several) particular lists, we instead metatrain a 
learning neural system to be able to learn arbitrary new lists. Building 
upon previous work in metalearning, or ‘learning-to-learn’16–20, we 
metatrained neural networks endowed with biologically plausible 
(Hebbian) synaptic plasticity and self-controlled neuromodulation. 
These networks are able to actively modify their own connectivity 
in response to external input (such as sensory stimuli and rewards), 
thereby enabling autonomous, self-directed learning across trials. 
Importantly, the learning algorithm that these networks employ is not 
manually specified in advance, but instead entirely ‘discovered’ by the 
metatraining process.

Results
Model overview
We metatrain a recurrent neural network, endowed with synaptic 
plasticity and neuromodulation, to be able to autonomously learn 
an arbitrary implicit serial order for a set of arbitrary stimuli, over the 
course of several trials in which pairs of stimuli are presented, following 
the classic paradigm of transitive inference6,8–11. Schematics of the task 
and model are shown in Fig. 1a–e.

The task is organized into episodes, each of which is composed of 
a number of trials (Fig. 1b–d). In each episode, the agent is tasked with 
learning an implicit ordering over completely new random stimuli 
(items A, B, C, etc.; Fig. 1a). The stimuli are high-dimensional binary 
vectors (size = 15; we obtained similar results with one-hot vectors), 
randomly generated anew for each episode. The number of items in 
the list to be learned varies from episode to episode between four and 
nine (inclusive); all results below use eight items. Each episode consists 
of 30 trials, where each trial consists of the simultaneous presentation 
of two stimuli, a binary response by the agent (choose item 1 or item 2),  
and a binary feedback signal R(t) indicating whether the response was 
correct or not (that is, whether the chosen stimulus was in fact the 
higher ranking of the two in the overall ordering).

The first 20 trials of an episode include only adjacent pairs, that 
is, pairs of stimuli with adjacent ranks in the series. The last ten trials 
include all possible pairs (excluding identical pairs such as AA or BB), 
unless specified otherwise. Performance in a given episode is assessed 
as the proportion of correct responses over the last ten trials.

Within each episode, the agent undergoes synaptic changes 
(plasticity), gated by a self-generated modulatory signal (Fig. 1e and 
Methods). From these synaptic changes, a successful agent would be 
able to learn the correct ordering of all stimuli over the course of the 
episode. To generate such agents, after each episode, we apply gradient 
descent to the structural parameters of the network (the base weights 
and plasticity parameters, as well as other parameters; see below), to 
improve within-episode plasticity-based learning. The loss optimized 
by gradient descent is the total reward obtained over the whole episode.

The gradients are computed by a simple reinforcement learning 
algorithm, namely, Advantage Actor Critic (A2C)21, which is readily 
interpretable as modeling dopamine-based learning in the brain19. See 
Methods and Supplementary Note 5 for details.

Metalearning discovers solutions for transitive inference
Across multiple runs, the metatraining procedure described above 
consistently generated a high-performing learning agent (Fig. 1f). 
Subsequent analysis of trained networks indicated that all runs that 
reach the higher performance level yield a similar solution, which is pre-
sented below. Interestingly, some runs yielded agents that performed 
at relatively lower levels (Fig. 1f, gray traces), suggestive of a different 
solution in these agents. We return to these lower-performing agents 
in a subsequent section (‘A suboptimal solution cannot perform list 
linking’); in the following sections, we analyzed a single network rep-
resentative of the higher-performing agents (unless stated otherwise).

Metatrained networks reproduce experimentally observed 
behavioral patterns
To assess the behavior of a successful learning network, we ran a single 
episode (20 learning trials with only adjacent pairs, followed by 10 test 
trials with all possible pairs) with eight stimuli (A to H) randomly gen-
erated for that episode. Figure 2a reports performance on the last ten 
(test) trials of this episode, separately for each pair, with pairs arranged 
according to ‘symbolic distance’, that is, the absolute difference in rank 
between items in the pair.

The network expressed two classic behavioral patterns charac-
teristic of humans and animals in transitive inference experiments8,11. 
First, we observed the so-called symbolic distance effect6,8,10,11,22—
performance is higher for the pairs with higher symbolic distance 
(upward trend from left to right, Fig. 2a; compare with Fig. 2b, showing 
monkey experimental data). In particular, performance is the low-
est for adjacent pairs (AB, BC, etc.). This effect is especially notable 
because the first 20 trials involve only adjacent pairs (as done in 
experiments, serving as a ‘training set’ for the task)—performance 
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Fig. 2 | Reproduction of experimentally observed behavioral patterns. 
a, Performance (% correct) by trial type. Trial types (item pairs; Fig. 1b) are 
arranged according to the difference in rank between items (‘symbolic distance’). 
Network responses were taken exclusively from the last ten trials of episodes, 
and for 2,000 separately run episodes split into ten subsets of 200 episodes 
each. Solid lines and shaded areas indicate median and interquartile range of 
mean performance for each pair across subsets. Note the higher performance 
for higher symbolic distance pairs (symbolic distance effect), and higher 
performance for pairs that include highest- or lowest-ranked items (here A 
or H (end-anchor effect)). b, Experimental data from monkeys (redrawn with 
permission from Brunamonti et al. (Fig. 1 of ref. 22)), displaying the same 
behavioral patterns (mean and s.e. of the mean for success rate over 30 sessions, 
each with at least 14 test trials for each pair, for either participant). See also Fig. 2 
of ref. 11 and human data in Supplementary Fig. 5 of ref. 14.
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is thus worse on the ‘training set’ compared to the ‘test set’, contrary 
to standard expectation.

Second, we observe an end-anchor effect6,11,14,22 (also known as 
‘serial position effect’)—performance is consistently higher for item 
pairs that involve the highest- or lowest-ranked items rather than other 
pairs of equivalent symbolic distance (for example, performance on AC 
and FH is higher than performance on CE or DF). This effect is seen as a U 
shape for sets of pairs of the same symbolic distance (Fig. 2a compared 
with Fig. 2b; refs. 8,11). Thus, the network successfully demonstrates 
transitive inference and reproduces behavioral patterns consistently 
observed in animal and human experiments.

Notably, in additional experiments, we found that the network is 
robust to so-called ‘massed presentation’ of one single pair, which is 
known to disrupt performance in certain learning models of transitive 
inference but not in living subjects11,23 (see Supplementary Note 9  
for details).

Metatrained networks rapidly reassemble existing knowledge
Monkeys and humans can rapidly ‘link’ separately learned lists after 
learning an item pair relating the two lists. That is, after learning 
A > B > C > D and E > F > G > H separately, and then learning D > E, they 
can quickly infer ordering across the entire joint list (C > F, B > G, etc.)8–11. 
This list linking ability implies that the presentation of a pair can affect 
the subjective ranking not just of items in the linking pair (here D and E) 
but also of other previously learned items not shown in the current trial.

We ran the metatrained network on ten trials using adjacent pairs 
from ABCD, then ten trials using adjacent pairs from EFGH, and then 

finally four trials with D and E. Then we estimated performance on a 
single ‘test’ trial, which could use any pair from the whole ABCDEFGH 
ordering. This was repeated over 2,000 runs, again with different 
randomly generated stimuli for each run. Results for the last ‘test’ trial 
are shown in Fig. 3a. Examination of performance on pairs including 
items from both sublists (for example, CE, CF, BG, etc.) confirmed that 
the network successfully linked the two lists into a coherent global 
ordering. Interestingly, performance was consistently poor for the 
pairs immediately adjacent to the linking pair, especially from the 
earlier-learned list (here CD), a pattern reported in monkey experi-
ments (Table 2 of ref. 9).

A control experiment in which a different, nonlinking pair (EF) 
was shown for one trial only (instead of four trials with the linking  
pair DE, as above) produced no evidence of list linking (unlinked or 
‘sham’ condition; Fig. 3b). In this case, performance was far below 
chance on pairs consisting of items whose rank within their respec-
tive lists conflicted with their overall rank in the global list (for exam-
ple, for pair CE, E has high rank within its own list EFGH, while C 
has low rank within-list ABCD, yet C is higher than E in the overall 
combined list ABCDEFG). This suggests that the rank of an item gen-
eralizes across unlinked lists; such transfer of rank across lists is also 
observed in experiments11,24. This effect produces a characteristic 
bump in error rate for intermediate symbolic distances with non-
linked lists but not with linked lists (because pairs where within-list 
and across-list ranks conflict are more likely to have intermediate 
symbolic distance), which the metatrained network also reproduces 
(Fig. 3c,d).
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Fig. 3 | List-linking performance and comparison to experimental data. 
a, Performance (% correct) by trial type for episodes testing list linking. The 
network was presented with trials for learning ABCD, EFGH and DE, then tested 
on a single trial of any type (any item pair). Performance was measured solely for 
the final test trial. Conventions are the same as in Fig. 2. Note the relatively lower 
performance for pairs immediately adjacent to the linking pair (here CD and 
EF), as reported in experiments9. b, Performance in unlinked (‘sham’) condition. 

Instead of the linking pair DE, the network was presented with EF. c, Symbolic 
distance effect across lists, in linked and unlinked (‘sham’) conditions. Data 
are the same as in a and b. Note that the linked condition produces a symbolic 
distance effect that is largely monotonic, while the sham condition (unlinked) 
produces a bump in error for intermediate symbolic distances. d, Monkey 
experimental data, following the basic conventions in c, from ref. 24. See also  
Fig. 4b of ref. 10 for human experimental data.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01852-8

Neural mechanisms of transitive inference
A simple representational scheme for transitive inference
To understand the trained network’s operation, we first examined 
network activity with principal component analysis (PCA). r(t) is the 
vector of neural activity at a given time (one element per neuron; Meth-
ods). We observed that the first principal component (PC1) of network 
activity r(t) at time step 2 of trial 20 (the last trial with adjacent-only 
pairs) is strongly aligned with the vector of output weights wout, with 
correlation r > 0.9 (Fig. 4, left). As shown by the segregation of trials by 
the network’s choice in Fig. 4a (red vs. blue points, left), position along 
this axis largely determines the network’s choice response across trials. 
This is as expected because network response is read as the projection 
of r(t = 2) onto output weights (Methods).

Further, we found that r(t = 2) did not appear to contain informa-
tion about the identity or rank of either individual item in the pair. 
Using various classification methods, we failed to reliably decode the 
rank of either the first or the second item from neural data at step 2  
(Supplementary Fig. 5). Furthermore, neural activity vectors were 
not consistently separated by the rank of the first item (Fig. 4, right).

To understand how pairs of items are represented, we first exam-
ined the representations of isolated single items. We presented each 
stimulus X ∈ (A, B, C, D, E, F, G, H) to the network as item 1 in isolation 
(not paired with any other) and observed the resulting neural activity 
r(t) at time steps 1 and 2. When showing item X in isolation, we denote 
r(t = 1) with the symbol ψt1(X) (the feedforward, step 1 representation of 
X, determined solely by the fixed, nonplastic input weights) and r(t = 2) 
with the symbol ψt2(X) (the learned, step 2 representation, produced by 
applying one step of recurrence through the learned, plastic weights 
to ψt1(X), and which determines the network’s response for this trial).

We found that the plasticity-learned representation ψt2(X) of each 
stimulus X aligns with the network’s decision axis (the output weight 
vector wout) in proportion to item rank. That is, ψt2(A) has large positive 
correlation with wout, ψt2(H) has large negative correlation with wout and 
intermediate items follow a monotonic progression (Fig. 4b).

In the actual task, stimuli are not presented in isolation, but in 
pairs. How are those learned representations of single items com-
bined to represent pairs of items? Examining input weights Win, we 
found that the input weights for the two items in the pair (that is, items 
1 and 2; Fig. 1e) are strongly anticorrelated (r ≈ −0.9). As a result, a 
given item’s representation when shown as item 2 is essentially the 
negative of its representation when shown as item 1. Therefore, when 
a pair of items (X, Y) is presented as input, the network automatically 
computes a subtraction between the representations of both items 
(r(t = 1) ≈ ψt1(X) − ψt1(Y)). At the next time step, application of the 
recurrent weights approximately transforms this subtraction into 
ψt2(X) − ψt2(Y) (neglecting the nonlinearity). Because ψt2(X)’s alignment 

with the output weight vector wout is proportional to item rank, the 
alignment of r(t = 2) ≈ ψt2(X) − ψt2(Y) with wout, which determines the 
network’s response, is proportional to the difference in rank between 
items X and Y.

This scheme provides a simple, intuitive mechanism for transitive 
inference—once the correct representation ψt2(X) for each individual 
item X has been learned, the subtractive operation immediately gen-
eralizes to nonadjacent pairs. Furthermore, more distant pairs imply 
a larger difference in the projection of either individual item along the 
decision axis; this suffices to cause a symbolic distance effect, where 
more distant item pairs are more accurately judged. A similar subtrac-
tive process has also been observed in models trained by abstract 
algorithms13–15.

We note that the anticorrelated input weights for the two items in 
a stimulus pair were not specified by design, but emerged as a result 
of metatraining. We also note that these anticorrelated inputs are not 
strictly necessary for success—similar performance and abilities are 
obtained if Win is frozen to its initial random values (not updated during 
metatraining) instead (Supplementary Note 6).

Representation learning
How does the metatrained network learn such order-encoding rep-
resentations over the course of an episode? To investigate this how, 
we first assessed the dynamics of the neuromodulatory output m(t) 
as this output is a simple, one-dimensional signal with a critical role 
in the network’s learning (Methods). As shown in Fig. 5a,b, across tri-
als, m(t) at time step 3 (corresponding to the time of reward delivery 
for this trial) is consistently negative, regardless of reward received. 
By contrast, m(t) at time step 4 (corresponding to the delay between 
trials) is strongly dependent on reward received at time step 3, being 
highly negative for negative rewards (incorrect trials) but positive or 
near zero for positive rewards (correct trials; Fig. 5c). This suggests 
that neuromodulatory outputs at time steps 3 and 4 of a given trial 
have different roles in learning.

We then examined changes in the plastic weights (and the resulting 
representations) at each successive time step of a trial. Reasoning that 
error trials would be most useful in clarifying how the network learns, 
we selected runs in which the network sees the pair DE or ED at trial 
20, but not in any previous trial (we focus on DE for illustration only; 
similar results hold for other pairs; Extended Data Fig. 2). This presen-
tation of a new pair of items with intermediate ranks, not previously 
encountered, invariably leads to an erroneous response in this trial. At 
this stage, the network has only encountered D and E as the lowest- and 
highest-ranked items, respectively, within two separate sublists (A–D 
and E–H) misrepresenting their true order, D > E. We sought to char-
acterize the actual representational changes resulting from this error.
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activity taken from trial 20 (first trial with nonadjacent pairs) across 2,000 
separately run episodes (items generated independently for each episode). 
a, Principal component analysis (PCA) of neural activity. Each data point 
corresponds to r(t) at time step 2 of an individual trial. All plots show the same 
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2); middle-right, correct versus incorrect; right, identity of item 1 (only four items 
shown for clarity). Note that PC1 is aligned with wout and effectively distinguishes 
between the different responses of network (left). b, Encoding of item rank. 
Alignment (correlation) of each item’s step 2 neural representation ψt2(X) with 
the output weight vector wout. Mean ± s.d. over episodes. Note the monotonic 
ordering (ranking) of items.
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In particular, we computed the network’s learned (step 2) repre-
sentations of each isolated item ψt2(X). Moreover, we computed this 
representation across time in the trial, using frozen plastic weights 
P(t) extracted at each of the four successive time steps (of trial 20). 
This allowed us to observe ψt2(X) as it was represented by the network 
at each specific time step of the trial. Then, we computed the cor-
relation of each of these successive representations with the output 
weight vector wout, as in Fig. 4b, thereby enabling us to observe how 
the network’s estimated rank of item X changes across time steps as a 
result of plasticity (Fig. 6, top row).

We found that plasticity in step 3 (when the reward signal is deliv-
ered to the network) produces small weight changes restricted to items 
D and E (Fig. 6, bottom row, third column). By contrast, step 4 produces 
not only relatively larger changes for items D and E, but, crucially, a 
substantial change (of appropriate sign) for items C and F (Fig. 6, bot-
tom row, fourth column), neighboring items not presented in the trial. 
This extension of representation changes to additional items serves to 
‘reassemble’ previously separate orderings into a single global order-
ing (Fig. 6, top row, compare right (step 4) and middle-right (step 3)), 
consistent with the network’s ability to perform list linking.

Reinstatement of recoded representations supports learning
How do these plastic changes occur mechanistically? In the model, 
plasticity at time step k can only access activity over the preceding two 
time steps (equations (5) and (7)). This appears to pose a problem, as 
stimuli are presented at time step 1, yet the crucial plasticity (as shown 
above) occurs at time step 4. This problem implies that the network 
can somehow reinstate representations of relevant stimuli (including 
nonpresented items) at time step 2, thus enabling the appropriate 
plasticity to take place at time step 4.

However, in initial analyses, we failed to find reinstatement of 
original (feedforward) stimulus representations. Feedforward rep-
resentations ψt1(X) were strongly present in neural activity at time 
step 1 (that is, upon stimulus presentation), as expected, but were not 
found at time step 2 or any other time step (Fig. 7a). Thus, the delayed 
learning at time step 4 observed in Fig. 6 did not involve reactivation 
(or persistence) of the original stimulus representations.

Could this lack of reactivated representation reflect a different 
kind of representation? We considered that the network is not uni-
formly plastic—each connection has a different baseline nonplastic 
weight Wi,j and a different plasticity coefficient Ai,j. Therefore, to pro-
duce the appropriate synaptic changes through Hebbian plasticity, 
the relevant reinstated representations should not be identical to the 
original (feedforward) representation of each item ψt1(X). Rather, such 
plasticity would involve recoded versions of these representations, 
which would produce appropriate learning (that is, ensure that Heb-
bian learning adjusts learned representations of the relevant items in 
the correct direction along the decision axis) when taking into account 
the heterogeneous plasticity across individual synapses.

To identify these putative recoded representations, we designed 
an optimization-based procedure that captures the above hypotheses 
(Supplementary Note 8). This procedure yielded a predicted recoded 
version of the feedforward representations (ψt1(X)), which we termed 
ψ̃t1(X), and of the decision axis (wout), which we termed w̃out.

We found that the relevant items are indeed represented in neural 
activity, in the predicted recoded forms ψ̃t1(X), precisely at time step 
2 and with appropriate signs. Figure 7b shows the correlation between 
r(t) and the predicted recoded feedforward representations ψ̃t1(X) of 
all items, for each step of trial 20, again using only runs in which the 
pair shown at trial 20 was either DE or ED. Critically, in addition to 
current-trial items (D and E), neighboring items (C and F) are also 
reinstated. Furthermore, we found that the recoded representation of 
the decision axis (output weight vector) is represented specifically at 
time step 3, with the same sign as the network’s response for this trial 
(Extended Data Fig. 3 and data for other pairs is shown in Fig. 8). 
Together with the error-selective m(t) signal at t = 4, and neuromodu-
lated Hebbian learning as governed by equations (5) and (7), this suf-
fices to explain the shift in learned step 2 representations of the above 
items in the appropriate direction, as observed in Fig. 6 (Supplemen-
tary Note 1).

Importantly, the recoded representations ψ̃t1(X) are markedly 
different from the original representations evoked by the actual stimuli 
ψt1(X). Correlation between ψ̃t1(X) and ψt1(X) for any item X was consist-
ently below 0.1 in magnitude, and could be of either sign. This clarifies 
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why we did not find reactivation of the original stimulus representa-
tions (Fig. 7a). Therefore, reinstated representations that support 
delayed learning in the network are not generally similar to the original 
feedforward representations, although they contain the appropriate 
information to enable learning for the corresponding items (Discussion 
and Supplementary Note 8).

Joint reinstatement of adjacent stimuli requires the model to 
identify which items are adjacent to one another. How is this learned? 
We found that the relevant learning occurs at time step 3, correspond-
ing to the small, reward-independent spike in m(t = 3) previously seen 
(Fig. 5). This modulatory spike induces Hebbian learning between the 
feedforward representations of item pairs presented at time step 1, 
and these pairs’ reinstated, recoded representations at time step 2. The 
result is that future presentations of either item in the pair will induce 
reinstatement of the other item. Since stimuli up to trial 20 are always 
comprised of pairs of adjacent items, this learning mechanism explains 
joint reinstatement of adjacent stimuli (Fig. 7b). Importantly, the con-
sistently negative sign of m(t = 3) ensures that this joint reinstatement 
occurs with a common sign. See Supplementary Note 4 for details and 
additional experiments.

A more precise step-by-step summary of the discovered neural 
algorithm is provided in Supplementary Note 1. We also evaluated a 
non-neural, toy-model implementation of the algorithm, verifying that 
this overall algorithm suffices to produce appropriate representations 
within an episode (Supplementary Note 2).

A suboptimal solution cannot perform list linking
As mentioned earlier (‘Metalearning discovers solutions for transitive 
inference’), the metatraining process sometimes yields networks that 
perform at a substantially lower level (Fig. 1f, gray traces), suggesting 
that these networks implement a different learning method. Indeed, 
analysis of these networks revealed an alternative solution to order 
learning, based on simple reward-modulated Hebbian learning: neu-
romodulatory output m(t) was strongly sensitive to reward at t = 3 
(reward delivery time; Supplementary Fig. 9). As denoted in equation 
(7), this signal automatically modulates Hebbian learning between 

feedforward item input (at step 1) and response (at step 2). Represen-
tation learning only appears to occur at time step 3 (reward delivery 
time; Supplementary Figs. 10 and 11). Finally, we note that after the 
first several trials, step 3 learning in these networks only occurred in 
incorrect trials (negative rewards).

This ‘passive’, nonreinstating Hebbian solution was capable of 
passable transitive inference, yet, tellingly, failed to perform list linking 
(Extended Data Fig. 1), unlike the ‘active’, cognitive solution described 
previously. As the passive solution only involves current-trial infor-
mation, it is unable to rapidly modify representations of items not 
currently presented (knowledge ‘reassembly’). See Supplementary 
Note 11 for details.

Discussion
In this study, we metatrained neural networks, endowed with synaptic 
plasticity and neuromodulation, in a classical transitive inference task 
paradigm. The metatraining process consistently produced networks 
that were capable of learning arbitrary orderings for transitive infer-
ence, and, further, that reproduced multiple important experimen-
tally observed behaviors (symbolic distance effect, end-anchor effect, 
cross-list rank transfer, resistance to massed presentations). To our 
knowledge, these networks are the only neural models described thus 
far to do so11.

Surprisingly, despite the simplicity of the networks, the learning 
mechanism employed (as discovered by the metalearning process) 
relied on a cognitive act—relevant previous stimuli were actively and 
selectively reinstated in neural activity (in recoded form), enabling 
trial-delayed (temporally remote) changes in their representations.

As a result of this reinstatement, and despite not being explic-
itly trained to do so, this solution was able to perform list linking, 
a task paradigm of fast knowledge reassembly10 (observed in both 
monkeys8,9,24 and humans10), moreover reproducing experimentally 
observed patterns of errors (Fig. 3 and ref. 9).
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By contrast, a minority of the resulting networks learned order 
through simple reward-modulated Hebbian learning, applied to imme-
diate stimuli, responses and rewards. This ‘passive’, nonreinstating 
solution was still capable of passable transitive inference at test time, 
suggesting that transitive inference stricto sensu (which James once 
called ‘the broadest and deepest law of man’s thought’25 (p. 646)) does 
not require advanced cognition15. Importantly, however, this nonrein-
stating solution was not capable of performing list linking (Supplemen-
tary Fig. 9). This striking difference between the metatrained models 
echoes differences in list-linking (and order learning) ability across 
animal species6,8 and human participants10, and, further, is apropos 
to the inability of classical learning models to perform list linking8,11.

The reinstatement found in the dominant solution is reminis-
cent of neural activity that appears to reflect reactivation of memory 
traces, such as hippocampal ‘replay’26–28, which has been suggested as 
a component of relational learning28–32. However, traditional replay 
tends to occur spontaneously and also often outside of periods of 
overt task engagement26,27,30. By contrast, reinstatement in our model 
is evoked by stimulus presentation at fixed time points in a trial, and 
is directly conjoined to representation learning within a given trial. 
Such stimulus-evoked, learning-period reactivation is more broadly 
consistent with the finding of ‘retrieval-mediated learning’33,34, which 
has been linked to relational learning in the associative inference task 
paradigm29,35. Our results suggest that such reactivation can also have a 
role in order learning paradigms, not directly for response production, 
but rather to modify previously established representations in accord-
ance with relational structure (knowledge ‘reassembly’).

We also found that representations of previous stimuli were rein-
stated in a recoded form. Reactivation is often measured by testing for 
the re-occurrence of patterns similar to those evoked by the original 
stimuli30,31, or by computing the similarity between neural activity 
during and after encoding28. Our results emphasize that reinstated 
representations need not be identical, or even similar, to those directly 
elicited by stimulus presentation, but may differ from them seemingly 
arbitrarily—as long as they produce the desired effect on representa-
tions (Fig. 7, compare plots, and Supplementary Note 8).

The ‘active’, reinstating solution uses reinstatement for learning, 
rather than for inference at decision time. By design, agent responses 
(produced at step 2, after exactly one pass through the plastic recur-
rent weights) cannot involve complex processing, but must operate as 
a model-free ‘learned reflex’. By contrast, the delayed, self-generated 
learning at step 4 is model-based: it relies on reinstatement, and the 
agent must know which items neighbor each other (a simple model of 
its environment) to reinstate the correct ones. Therefore, the active, 
reinstatement-based solution combines model-based learning with 

model-free inference, reminiscent of the so-called Dreamer algorithm 
from the machine learning literature36.

Finally, our results illustrate the potential of modeling approaches 
based on plastic artificial neural networks. Many recent studies have 
trained recurrent neural networks with backpropagation on various 
tasks, identifying rich dynamics that support the performance of 
these tasks14,37–39. The present study extends this approach to plastic 
networks, capable of controlling their own learning, and metatrained 
(using gradient descent) to discover new learning processes that can 
autonomously perform cognitive learning tasks. Our results demon-
strate the power of this approach for investigating the space of neural 
mechanisms that support learning and cognition.
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Methods
Terminology
Metalearning, or ‘learning-to-learn’, consists of training an agent so 
that it can solve new instances of a general learning problem16,18,19,40. 
That is, instead of training the agent separately on each new instance 
of the problem, we metatrain an autonomous learning agent so that it 
acquires the ability to learn autonomously and efficiently any given 
instance of the problem, including new instances never seen during 
training. Classic work by Harlow41 first showed that animals possess 
this ability in an item-value association metatask—over the course of 
multiple episodes, monkeys became progressively better at learning 
(and exploiting) which of two possible items was associated with a 
food reward. Typical metalearning problems in the literature include 
maze solving42,43, bandit tasks18,42, fast association between stimuli and 
labels18,43,44 and item-value problems such as the Harlow metatask19,41. 
Here we apply a metalearning framework to plastic neural networks, 
training them to be able to learn new ordered series of arbitrary 
stimuli from pairwise presentations, as in classic transitive inference 
experiments8,11,45.

In the following, to avoid confusion, we will maintain separate 
usage for the words learning and training. We use the word ‘learn-
ing’ to denote within-episode learning of one particular ordered list, 
driven by synaptic plasticity in plastic weights. In contrast, we use 
the word ‘training’ to denote the gradient-based optimization that 
occurs between episodes, and modifies the structural parameters of 
the network, with the goal to improve within-episode plasticity-driven 
learning. This distinction follows that between ‘inner loop’ and ‘outer 
loop’, respectively, in standard metalearning terminology18,42.

In each trial, after the network produces a response, it is given a 
binary feedback signal R(t) that indicates whether this response was 
correct or not. We call this signal ‘reward’, although we stress that it is 
merely an additional input to the network, and has no predefined effect 
on network structure by itself.

Finally, we use ‘stimulus’ and ‘item’ interchangeably.

Network organization
The network is a recurrent neural network endowed with Hebbian 
plasticity and self-controlled neuromodulation, containing n = 200 
neurons (Fig. 1). The general structure of the network and learning 
process largely follows those of a previous study20. The code was written 
entirely in PyTorch and run on Google Colab. All code for the following 
experiments is available online (Code availability).

The inputs i(t) consist of a vector that concatenates the stimuli for 
the current time step, the reward signal R(t) for the current time step 
(0, 1 or −1), and the agent’s response at the previous time step (if any), 
in accordance with common metalearning practice18,19,42. The network’s 
output is a probability distribution over the two possible responses 
(‘choose stimulus 1’ or ‘choose stimulus 2’). At response time, the agent’s 
actual response for this trial is sampled from this output distribution; 
at other times, the outputs are ignored.

Recurrent connections within the network undergo synaptic 
changes over the course of an episode, modeled as simple neuromodu-
lated Hebbian plasticity as described in the ‘Synaptic plasticity’ section.

Formally, the fully connected recurrent network acts according 
to the following equations:

x(t) = Win i(t) + (Wrec + A⊙ P(t)) r(t − 1) (1)

r(t) = tanh(x(t)) (2)

m(t) = Wmod r(t) (4)

o(t) = Softmax(Wout r(t)) (3)

Here i(t) is the vector of inputs provided to the network, x(t) is the 
vector of neural activations (the linear product of inputs by weights), r(t) 
is the neural firing rates (activations passed through a nonlinearity), o(t) 
is the output of the network (that is, the probability distribution over the 
two possible responses) and m(t) is the (scalar-valued) neuromodulatory 
output whose role is to gate synaptic changes (plasticity; see below).

Wrec and A are the base weights and plasticity parameters (plastic-
ity learning rates) of the recurrent connections, respectively. They are 
structural parameters of the network, and do not change during an 
episode, but rather are slowly optimized between episodes by gradient 
descent. By contrast, P(t) is the plastic component of the weights, reset 
to 0 at the start of each episode and changing over an episode accord-
ing to the plasticity rule described below. The symbol ⊙ denotes the 
pointwise (Hadamard) product of two matrices.

We note that these equations are simply the standard recurrent 
neural network equations, except that the total recurrent weights are 
the sum of base weights Wrec and the plastic weight term A ⊙ P(t).

Crucially, within an episode, only the plastic recurrent weights 
P(t) are updated, with the updating governed by the plasticity rule 
described below. All other parameters (Win, Wrec, Wout, Wmod and A) are 
fixed and unchanging within an episode, but are optimized by gradient 
descent between episodes.

In all experiments, the final trained output weight matrix Wout were 
found to have two highly anticorrelated rows (r < 0.9), corresponding 
to the two opposite possible decisions (choose item 1 vs. choose item 
2). Thus, in the text, we generally summarize the Wout matrix by a single 
vector wout, computed as the difference between the two rows of Wout. 
All results are unchanged (up to sign) if wout was instead taken to be 
either row of Wout.

Synaptic plasticity
To model synaptic learning, recurrent connections are endowed with 
modulable Hebbian plasticity20. Each connection maintains a so-called 
Hebbian eligibility trace H(t), which is a decaying running average of 
the product of outputs and inputs.

H(t + 1) = ηx(t) r(t − 1)T + (1 − η)H(t) (5)

Since the network is recurrent, x(t) corresponds to the ‘outputs’, 
while r(t − 1) corresponds to the ‘inputs’ across the recurrent connec-
tions (cf. equation (1)).

Finally, the network continually produces a neuromodulation 
signal m(t) that gates the Hebbian trace into actual changes in plastic 
weights P.

P(t + 1) = P(t) +m(t)H(t) (6)

We emphasize that P(t) is initialized to 0 at the beginning of each 
episode, and changes according to the above equations (without reini-
tialization) over the course of an episode. Also note that while H(t) is 
decaying, P(t) does not decay within an episode.

In equation 5, η is a network-wide parameter, optimized by gradi-
ent descent between episodes. Notably, across many experiments, 
we observed that training consistently settles on a value of η ≈ 1. This 
means that H(t) is almost fully updated at each time step, with essen-
tially no memory of events occurring before time t − 2. As such, we can 
approximate the actual plasticity process as follows:

P(t + 1) ≈ P(t) +m(t)x(t − 1) r(t − 2)T (7)

This observation has an important role in the elucidation of net-
work behavior, as described in the main text.

Task settings
Our objective is not simply to train successful learning networks but 
also to fully understand the neural mechanism of learning in these 
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trained networks. To this end, we deliberately sought to simplify trial 
structure as much as possible while retaining the essential structure 
of real-world experiments.

First, we restricted each trial to the shortest possible duration that 
still allowed for successful training, which we found to be exactly four 
time steps—stimulus presentation at step 1, network response at step 
2, external feedback (reward) at step 3 and, lastly, a delay time step 
before the start of the next trial, as step 4.

Second, we reset neural activations x(t), r(t) and Hebbian eli-
gibility traces H(t) at the start of each trial (but not plastic weights 
P(t)). This is to ensure that neural activity dynamics remain con-
fined to a single trial, with only plastic weights carrying memory 
of past events from one trial to the next. If we do not reset neural 
activations between trials, trained networks consistently settle on 
strategies that process information from successive trials in paral-
lel; that is, activations in trial k represent information not just from 
trial k but also from trial k − 1. While potentially interesting, this phe-
nomenon complicates the investigation of mechanisms underlying 
within-episode learning. We therefore chose to reset activations at 
the start of each trial.

Rewards in the last ten episodes are upweighted by a factor of 
4; this only modifies the metalearning loss for outer-loop gradient 
descent and does not affect the reward signal registered by the network.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Code availability
All code for the experiments described above, as well as saved param-
eter files for representative networks for both discovered solutions, is 
available at https://github.com/ThomasMiconi/TransitiveInference.
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Extended Data Fig. 1 | Performance of the suboptimal network. Proportion 
of correct test trials, in standard (single-list) conditions (top; compare to 
high-performance network in Fig. 2a) and list-linking conditions (bottom; 
compare to high-performance network in Fig. 3a), over 2,000 episodes. Median 

and interquartile range of correct responses for each item pair over 10 sets 
of 200 episodes each. Note that the suboptimal network performs transitive 
inference and expresses the symbolic distance effect for a single list, but fails the 
list-linking task. Conventions as in Figs. 2 and 3.
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Extended Data Fig. 3 | Reinstatement of recoded decision axis. Correlation 
between neural activity r(t) and recoded vector of output weights w̃out, at  
each time step of trial 20 (mean ± s.d. over 2000 separately run episodes),  
shown separately for runs in which network response at trial 20 was positive  
vs. negative. While actual response occurs at step 2, the recoded representation 

of the combined output weight vector w̃out is strongly represented at step 3,  
with sign correlated with network response for this trial. This representation 
enables Hebbian association with recoded representations of stimuli reinstated 
at step 2 (Fig. 6).
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